Integrate AI in WeChat Mini Program
Use CloudBase AI models in WeChat Mini Program for text generation and streaming.
How to use
See How to use Skill for detailed usage.
Test the Skill
You can test with these example prompts:
- "Integrate CloudBase AI model in WeChat Mini Program for smart conversation"
- "Create a Mini Program app using CloudBase AI model with streaming support"
- "Use Hunyuan model in Mini Program to generate and display content"
Select a prompt to start your AI-native development journey
Skill
rule.md
## When to use this skill
Use this skill for **calling AI models in WeChat Mini Program** using `wx.cloud.extend.AI`.
**Use it when you need to:**
- Integrate AI text generation in a Mini Program
- Stream AI responses with callback support
- Call Hunyuan models from WeChat environment
**Do NOT use for:**
- Browser/Web apps → use `ai-model-web` skill
- Node.js backend or cloud functions → use `ai-model-nodejs` skill
- Image generation → use `ai-model-nodejs` skill (not available in Mini Program)
- HTTP API integration → use `http-api` skill
---
## Available Providers and Models
CloudBase provides these built-in providers and models:
| Provider | Models | Recommended |
|----------|--------|-------------|
| `hunyuan-exp` | `hunyuan-turbos-latest`, `hunyuan-t1-latest`, `hunyuan-2.0-thinking-20251109`, `hunyuan-2.0-instruct-20251111` | ✅ `hunyuan-2.0-instruct-20251111` |
| `deepseek` | `deepseek-r1-0528`, `deepseek-v3-0324`, `deepseek-v3.2` | ✅ `deepseek-v3.2` |
---
## Prerequisites
- WeChat base library **3.7.1+**
- No extra SDK installation needed
---
## Initialization
```js
// app.js
App({
onLaunch: function() {
wx.cloud.init({ env: "<YOUR_ENV_ID>" });
}
})
```
---
## generateText() - Non-streaming
⚠️ **Different from JS/Node SDK:** Return value is raw model response.
```js
const model = wx.cloud.extend.AI.createModel("hunyuan-exp");
const res = await model.generateText({
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "你好" }],
});
// ⚠️ Return value is RAW model response, NOT wrapped like JS/Node SDK
console.log(res.choices[0].message.content); // Access via choices array
console.log(res.usage); // Token usage
```
---
## streamText() - Streaming
⚠️ **Different from JS/Node SDK:** Must wrap parameters in `data` object, supports callbacks.
```js
const model = wx.cloud.extend.AI.createModel("hunyuan-exp");
// ⚠️ Parameters MUST be wrapped in `data` object
const res = await model.streamText({
data: { // ⚠️ Required wrapper
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "hi" }]
},
onText: (text) => { // Optional: incremental text callback
console.log("New text:", text);
},
onEvent: ({ data }) => { // Optional: raw event callback
console.log("Event:", data);
},
onFinish: (fullText) => { // Optional: completion callback
console.log("Done:", fullText);
}
});
// Async iteration also available
for await (let str of res.textStream) {
console.log(str);
}
// Check for completion with eventStream
for await (let event of res.eventStream) {
console.log(event);
if (event.data === "[DONE]") { // ⚠️ Check for [DONE] to stop
break;
}
}
```
---
## API Comparison: JS/Node SDK vs WeChat Mini Program
| Feature | JS/Node SDK | WeChat Mini Program |
|---------|-------------|---------------------|
| **Namespace** | `app.ai()` | `wx.cloud.extend.AI` |
| **generateText params** | Direct object | Direct object |
| **generateText return** | `{ text, usage, messages }` | Raw: `{ choices, usage }` |
| **streamText params** | Direct object | ⚠️ Wrapped in `data: {...}` |
| **streamText return** | `{ textStream, dataStream }` | `{ textStream, eventStream }` |
| **Callbacks** | Not supported | `onText`, `onEvent`, `onFinish` |
| **Image generation** | Node SDK only | Not available |
---
## Type Definitions
### streamText() Input
```ts
interface WxStreamTextInput {
data: { // ⚠️ Required wrapper object
model: string;
messages: Array<{
role: "user" | "system" | "assistant";
content: string;
}>;
};
onText?: (text: string) => void; // Incremental text callback
onEvent?: (prop: { data: string }) => void; // Raw event callback
onFinish?: (text: string) => void; // Completion callback
}
```
### streamText() Return
```ts
interface WxStreamTextResult {
textStream: AsyncIterable<string>; // Incremental text stream
eventStream: AsyncIterable<{ // Raw event stream
event?: unknown;
id?: unknown;
data: string; // "[DONE]" when complete
}>;
}
```
### generateText() Return
```ts
// Raw model response (OpenAI-compatible format)
interface WxGenerateTextResponse {
id: string;
object: "chat.completion";
created: number;
model: string;
choices: Array<{
index: number;
message: {
role: "assistant";
content: string;
};
finish_reason: string;
}>;
usage: {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
};
}
```
---
## Best Practices
1. **Check base library version** - Ensure 3.7.1+ for AI support
2. **Use callbacks for UI updates** - `onText` is great for real-time display
3. **Check for [DONE]** - When using `eventStream`, check `event.data === "[DONE]"` to stop
4. **Handle errors gracefully** - Wrap AI calls in try/catch
5. **Remember the `data` wrapper** - streamText params must be wrapped in `data: {...}`