Skip to main content

在 Web 应用中集成 AI 功能

在浏览器/Web 应用中使用 CloudBase AI 模型,支持文本生成和流式响应

如何使用

查看如何使用Skill了解详细的使用方法。

测试 Skill

你可以使用以下提示词来测试:

  • "在 React Web 应用中集成 CloudBase AI 模型,实现文本生成功能"
  • "创建一个使用 CloudBase AI 模型的聊天界面,支持流式响应"
  • "在 Vue 应用中使用 CloudBase AI 调用混元模型生成内容"

Select a prompt to start your AI-native development journey

Skill

rule.md
## When to use this skill

Use this skill for **calling AI models in browser/Web applications** using `@cloudbase/js-sdk`.

**Use it when you need to:**

- Integrate AI text generation in a frontend Web app
- Stream AI responses for better user experience
- Call Hunyuan or DeepSeek models from browser

**Do NOT use for:**

- Node.js backend or cloud functions → use `ai-model-nodejs` skill
- WeChat Mini Program → use `ai-model-wechat` skill
- Image generation → use `ai-model-nodejs` skill (Node SDK only)
- HTTP API integration → use `http-api` skill

---

## Available Providers and Models

CloudBase provides these built-in providers and models:

| Provider | Models | Recommended |
|----------|--------|-------------|
| `hunyuan-exp` | `hunyuan-turbos-latest`, `hunyuan-t1-latest`, `hunyuan-2.0-thinking-20251109`, `hunyuan-2.0-instruct-20251111` |`hunyuan-2.0-instruct-20251111` |
| `deepseek` | `deepseek-r1-0528`, `deepseek-v3-0324`, `deepseek-v3.2` |`deepseek-v3.2` |

---

## Installation

```bash
npm install @cloudbase/js-sdk
```

## Initialization

```js
import cloudbase from "@cloudbase/js-sdk";

const app = cloudbase.init({
env: "<YOUR_ENV_ID>",
accessKey: "<YOUR_PUBLISHABLE_KEY>" // Get from CloudBase console
});

const auth = app.auth();
await auth.signInAnonymously();

const ai = app.ai();
```

**Important notes:**

- Always use synchronous initialization with top-level import
- User must be authenticated before using AI features
- Get `accessKey` from CloudBase console

---

## generateText() - Non-streaming

```js
const model = ai.createModel("hunyuan-exp");

const result = await model.generateText({
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});

console.log(result.text); // Generated text string
console.log(result.usage); // { prompt_tokens, completion_tokens, total_tokens }
console.log(result.messages); // Full message history
console.log(result.rawResponses); // Raw model responses
```

---

## streamText() - Streaming

```js
const model = ai.createModel("hunyuan-exp");

const res = await model.streamText({
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});

// Option 1: Iterate text stream (recommended)
for await (let text of res.textStream) {
console.log(text); // Incremental text chunks
}

// Option 2: Iterate data stream for full response data
for await (let data of res.dataStream) {
console.log(data); // Full response chunk with metadata
}

// Option 3: Get final results
const messages = await res.messages; // Full message history
const usage = await res.usage; // Token usage
```

---

## Type Definitions

```ts
interface BaseChatModelInput {
model: string; // Required: model name
messages: Array<ChatModelMessage>; // Required: message array
temperature?: number; // Optional: sampling temperature
topP?: number; // Optional: nucleus sampling
}

type ChatModelMessage =
| { role: "user"; content: string }
| { role: "system"; content: string }
| { role: "assistant"; content: string };

interface GenerateTextResult {
text: string; // Generated text
messages: Array<ChatModelMessage>; // Full message history
usage: Usage; // Token usage
rawResponses: Array<unknown>; // Raw model responses
error?: unknown; // Error if any
}

interface StreamTextResult {
textStream: AsyncIterable<string>; // Incremental text stream
dataStream: AsyncIterable<DataChunk>; // Full data stream
messages: Promise<ChatModelMessage[]>;// Final message history
usage: Promise<Usage>; // Final token usage
error?: unknown; // Error if any
}

interface Usage {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
}
```

---

## Best Practices

1. **Use streaming for long responses** - Better user experience
2. **Handle errors gracefully** - Wrap AI calls in try/catch
3. **Keep accessKey secure** - Use publishable key, not secret key
4. **Initialize early** - Initialize SDK in app entry point
5. **Ensure authentication** - User must be signed in before AI calls